

Zero-Emission-Vehicle Awareness Initiative (ZEVAI)

Knowledge Series 02

ZEV Transit System Planning Guidelines **Do & Don't!**

4 / 7 / 2 3

RESEARCH TEAM:

Sadia Tasnim Petra Ialeggio Anastasia Soukhov Moataz Mohamed

NRCan – ZEVAl Project

Zero Emission Vehicle Awareness Initiative

This Zero Emission Bus Knowledge series is supported by the Natural Resources Canada (NRCan), Zero Emission Vehicle Awareness Initiative (ZEVAI), Project# PCA-032_CA.

The opinions expressed are those of the authors and do not represent the views of the funding agency.

The aim is to spread Zero-Emission-Vehicle-Awareness within the transit community through a set of Knowledge series presentations, webinar, and reports.

Knowledge Series 02

e-Bus Transit System Planning Guidelines

Providing support to the ZEV Planning Phase

Knowledge for ZEV planning: fleet, infrastructure, and operation

Detailed activity-based model for e-Bus implementation

Planning Approaches

Bottom-up OR Top-down

High-level Planning Approaches

A Top-Down Approach

Stage I - Fleet/Network Planning

Buses

- Start with **Network** Feasibility
- Use winter energy consumption values
- Consider battery fading (6 years or 12 years)
- Estimate required battery size based on the degree of operational flexibility
- Assign spatiotemporal energy demand scores
 - Energy demand overtime at start/end stops, terminals, depot

- Start with Route Feasibility
- Use summer energy consumption values
- Assume that the battery will be the same for 12 years
- Use different battery sizes for each bus/route
 - No possible bus rotation
- Assign bus energy demand scores

Stage I – Things to consider

Buses

Homogenous batteries/buses or not!

Depot charging only or en-route depot!

Fixed routes or interlined operation!

Stage II - Infrastructure Planning

Charging/refueling stations

- Optimize charging location & sizing for the network
- Assess the charging schedule for the entire fleet
- Estimate energy demand overtime from the grid for the entire fleet
- Speak with utility providers on power availability

- Optimize charging location & sizing for each route
- Assess the charging schedule based on individual buses
- Estimate energy demand overtime from the grid per bus
- Plan without knowing utility limits

Stage II – Things to Consider

Charging/refueling stations

Number of poles for each charging station

Homogenous or heterogenous charges (Power)

Charging locations en-route vs. depot

Electricity pricing (Time of Use vs. Peak Demand)

Energy storage system utilization

Stage III - Operational Planning

Prior to implementation

- Use gas heater to save your energy consumption
- Rotate your buses to harmonize battery fading
- Train drivers for eco-driving
- Consider electricity time of use tariffs and energy storage system
- Optimize the charging schedule

- Use electric heaters for longer routes
- Fix buses to routes
- Drive the e-bus as a diesel bus
- Ignore electricity time of use tariffs and energy storage system
- Charge as needed

Stage III – Things to Consider

Prior to implementation

Detailed Guidelines

Implementation Guidelines

System-level Electrification Planning

Energy Demand	 Energy Demand Estimate energy demand per route, per operation time
Operation Scheme	Operation Schemes Re-code transit fleet in binary code
Network Structure	 Transit Network Structure Identify potential candidates for charging station locations
Infrastructure	Infrastructure Assessment Identify existing capabilities & expansion capacity
Technology Choice	 Technology Choice Assess alternative e-Bus technology

System-level Electrification Planning

Behind the meter	 Behind the meter Analysis Evaluate the suitability of utility infrastructure (transformer, wiring, local substation, etc.)
Utility Profile	 Utility Profile Assess the utility generation capacity per time (10-15 min)

System-Level Planning

Holistic system-level planning of e-Bus implementation. Provide accurate planning decisions based on the unique features of each transit network

Operational Planning

Lifecycle Assessment

e-Bus System Robustness & Resiliency

McMaster

University

Robustness is the system's ability to manage errors during implementation

Reliability is the probability of the system to function acceptably

Risk Assessment of High & Low Impact Risks:

- "Guinea Pig" Syndrome & Technology
- Human Resources Cost & Union Regulation

e-Bus Skills Development

• Analyze best practices, transit agency needs, & existing programs to develop guidelines of skills for e-Bus implementation.

Implementation of Business Plan which includes short-term & long-term planning decisions that cover Operation, Fleet Procurement, Infrastructure Upgrades, Rolling Out Strategy

All e-Bus implementation stages are concurrent & should not be addressed sequentially

Coming soon

Knowledge Series 03

The Perspective of Transit Providers The missing links to move forward!

BRIGHTER WORLD | mcmaster.ca

BRIGHTER WORLD | mcmaster.ca

Contact Us

Full report: https://www.researchgate.net/publication/364180204_Zero-Emission-Vehicle_Awareness_Initiative_ZEVAI_Knowledge_Series_02_ZEV_Transit_System_Planning_Guidelines

